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1 Institute of Mathematics and Stntistics, University of Kent, Canterbury CTZ 7NF, UK 

Received 25 May 1995 

Abstract. In l h i s  paper, a series of ralional Solutions are presented for a differential-difference 
analogue of the KdV equation, the Toda equation and the discrete KdV equation. These rational 
solutions are obwined using Hirota’s bilinear formalism and B&Mund transformations. The 
C N C i d  step is the use of nonlinear superposition formulae 

1. Introduction 

It is known that to find exact solutions of differential equations is always one of the 
central themes of perpetual interest in mathematics and physics. With the development of 
soliton theory, significant progress has been made in finding special solutions of integrable 
nonlinear evolution equations which include soliton solutions, rational solutions, similarity 
solutions and so on, and many approaches have been developed such as the inverse scattering 
transform (IST) [ 1,2], Hirota’s bilinear method [3], Backlund transformations [4], the Lie 
symmetry method 15.61, the ‘non-classical method’ due to Bluman and Cole [7], the ‘direct 
method’ due to Clarkson and Kruskal 181. 

In this paper we derive rational solutions of a differential-difference KdV equation, the 
Toda equation and the discrete Kdv equation using Hirota’s bilinear formalism and Bkklund 
transformations. Here the crucial step in finding rational solutions of these equations is the 
use of nonlinear superposition formulae. We remark that many results have been obtained 
with respect to finding special solutions of (1 4- 1)-dimensional and (2 t 1)-dimensional 
integrable nonlinear evolution equations. However, in comparison with the continuous case, 
there seems to be relatively less work for discrete integrable equations, though discrete 
Painlev6 equations have attracted much recent attention, cf 19-16], 

This paper is organized as follows. In section 2, a differential-difference KdV equation 
is considered and rational solutions of this equation are obtained. In section 3, we obtain 
the similar results for the Toda equation. In section 4, the rational solutions of a discrete 
KdV equation are given. Finally, conclusion and discussion are given in section 5. 

2. The differentid-difference KdV equation 

The differential-difference KdV equation under consideration is [ 171 

d(.)=wnn-j-wn+j. dt 1 tw, 
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By means of a variable transformation 

c o ~ h ( ~ D n ) f n  fn 
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- 1. wn = 
f.' 

equation (1) is reduced to the bilinear equation 1181 

sinh($D.) [Df + 2sinh(iD,)] f. .f = 0 

D;D:U(X, t )  . b ( X ,  t )  = (a, - a,.)ya, - a,,ya(x, t w ' ,  r ' ) i x , ~ , f r = f  
exp(6Dn)an. b. 5 exp[6(& - a..)l~(n)b(n')l~~,~ = a(n + 6)b(n - 6) 

(2) 

where the bilinear operators are defined as follows 131: 

where a, = a/ax etc. A Backlund transformation for (2) is given by Hirota 1181 

cosh({D,)f,.f,=hf,fi [D~+2hsinh(~D~)]f,.f, '=O. (3) 

cosh(AD,)f.. fi = fJ,, 

If we take h = 1, then (3) becomes 

p, + 2sinh($Dn)]fn fi = 0. (4) 

We shall represent the transformation (4) symbolically by f. + f;. Henceforth, we 
denote f , ( f )  f ( n .  f )  f ( n )  c f .  

In this section, we obtain a hierarchy of rational solutions for (1). To do this, we first 
prove the following result. 

Proposition 1. 
f, # 0. Then there exists a fi determined by 

Let fo and f i  be two solutions of (2) and fo + fi, with fo # 0 and 

(5) 
1 
k 

sinh($Dn)fi .fi = - cosh(iD,)fo.fo 

where k is a non-zero constant, such that fz is a new solution of (2) and fo + fi. 

PmoJ First we choose a particular solution F from (3, i.e. 

1 
sinh($Dn)fi. F = - cosh(aDn)fo. fo. 

k (6) 

We have, by using (6), 

0 = fo[coWfDn) - llfi fo 
= + f i b  + 4)exp(-~a,)Icosh(aD.)foof~l 

+ $ f i ( n  - f)ex~(aa,)[cosh(aD,)fo.fol- fi(W,"(4 

+$f i (n  - $)~exp(~a")[sinh(aD")fi  *FI - fi(n)&n) 

= $f i (n+ ~)kexp(-$a.)[sinh(aD,)f, .F] 
1 

= fi(n)[$ksinh(;D,)f,. F - &n)] 

which implies that 

2 
k 

sinh(iD,,)fi .F = -$. 
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(9) 
4 
k 

Dtfi .F + -cosh(fD,)fa.fo = c(t)f: 

where ~ ( f )  is a suitable function of f .  Now we choose f z  = F + f t  l ' c ( t ' )  dt'. Then 
equation (8) becomes 

(10) 
Drfi.fz+i;cosh(~D")fo.fo=O 4 

while fi satisfies (5). Using equations (5) and (9), we can deduce that 

[cosh(fD,) - I1fo.f~ = O  [Dt +2sinh(fDR)lfo.fi = O .  (1 1) 

Therefore f2 is a solution of (2) and fo --+ fi. Thus we have completed the proof of 
proposition 1. 

As an application of proposition 1, we  can obtain a hierarchy of polynomial solutions 
of (2). For example, if we choose fo = n - t + A and ft = 1, with A an arbitrary constant, 
then it is easily verified that n - t + A and 1 are two solutions of (2) and n - t + A + 1 .  
Furthermore, we can show that 

fz = (n - r ) 3  + 3A(n - t)* + (3AZ - $(n - t )  + 4r + B 

satisfies (5) with k = -:, where B is an arbitrary constant. Further suppose 

fo = (n - t )3  + 3A(n - t)' + (3A' - $)(n - t )  -t 41 + B fi = n - t +  A. 



~ 

1 
4(n - t t A)z  

n - t t A  - 
F 
c: (n - 0' + 3A(n  - t)' + (3AZ - +)(n - t )  t i t  + B - 

where 
F = - i (n  - t )4  - 3A(n  - t ) j  + (4 - ;A2)(n - t ) ' t  ($1 + aB - %A3 + $A) (n  - t )  

+ t A f  + : A B  + ;AZ - $A4 

G = [(n - t)' + 3A(n - r)' + (3A' - ;)(n - t )  + i f  + BIZ. 
and 
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3. The Toda equation 

The Toda equation is [I91 
a2 

- M I  + %(r)l = Vntl(t) + V,-I(Z) - 2V,(t). 
at2 

az 
W t )  = - In f d t )  

a t 2  

(12) 

By a variable transformation 

(13) 

equation (12) is transformed into the bilinear equation [3] 

[D~-4sinh2(fD,J]f.f=0. (14) 
A Backlund transformation for (13) is given by Hirota and Satsuma [20]: 

cosh(iDn) f.. f; = Af. f,' [D, + 2Asinh(iDn)]f, f,' = 0. (15) 
Since the Backlund transformation (15) of the Toda equation (14) is the same as that for the 
differential-difference KdV equation, i.e. (3), we can also deduce a series of rational solutions 
of (14), and so from (15) we obtain the rational solutions of the Toda equation (12) as given 
in the following table. 

fn@) VI 0)  

n - f + A  - 

F 
(n - 2)' + 3A(n - t )2  + (3AZ - a)(n - t )  + ft + B 

1 
(n - t + A)* 

- 
c 

where 

F = -3(n - t )4 - 12A(n - 1)' + (3 - 18A2)(n - t ) 2  + (3t + 6 B  - 18A3 + +A)(n - f )  

+3Af + 6 A B  + ;A2 - 9A4 - 5 
and 

G = [ (n - t)' + 3A(n - t)'+ (3A2 - f ) (n  - 2 )  + ft + BIZ. 

4. The discrete analogue of the KdV equation 

The so-called discrete analogue of the KdV equation is 13, 181 

where At is a central difference operator defined by 

A r F ( i )  = 6 - ' [ F ( t  + 6/2) - F ( t  - 6/2)], 

By means of the variable transformation 

equation (16) Is transformed into the bilinear equation [3,17] 

sinh f(Dn -!- 6Dt)[26-' sinh(f6D,) + 2sinh(iD.)]f. f = 0. (18) 
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A Backlund transformation for (18) is given by Hirota [3, 181 

cosh(fD.)f.f' =Acosh(fSD,)f-f' [26-'sinh($SD,) +2Asinh(iDn)]f.f' = 0. 
(1% 

We take A = 1, then (19) becomes 

cosh(iD.)f.f' = cosh(f8Dt)f.f' 

We shall represent (20) symbolically by f -+ f', We have the following result. 

Proposition 2. Suppose fo and fi are two solutions of (18) and fo -+ fi such that fo # 0 
and f, + 0. Then f2 given by 

[26-' sinh($'D,) + Zsinh(fD.)]f. f '  = 0. 
(20) 

(21) 

(22) 

1 

1 1 + 6  
k l - S  

sinh$(D.+SD,)fi.f2= kcosh$(Dn+SDf)fo.f~ 

sinhi(Dn -SD,)fr. fz=--cosh$(D,-SD,)fo.fo 

where k is a non-zero constant, is a new solution of (18) and fo + fz. 
The proof of this proposition is similar to that for proposition 1 and so details are left 

to the reader. 

Using proposition 2, we can also obtain a series of polynomial solutions of (9). For 
example, if choose fo = n --I + A ,  fi = 1, where A is an arbitrary constant, we then obtain 

f2 = (n - t ) 3  + 3A(n - t)'+ (3AZ - :S2 - a)(n - t )  + $(I - S2)t + E 
with E an arbitrary constant, which satisfies (21) and (22) with k-' = a@ - 1). Thus from 
(20) we obtain rational solutions of (19) as given in the following table. 

f"(-I) W " ( f " ( f ) )  

n - t + A  
6 2 -  1 

4(n - f + A)' - S2 
-- G I  1 (n - t )3  + 3A(n - -I)' + (3A2 - :8* - a)(n - t )  

+;(I - 6')t + B Gz 

where 

GI = [ (n  - t ) 3  + $(n - t )  + 3A(n - t)' + : A  + (3A' - $8' - i ) ( n  - t )  

+ f ( l  - S 2 ) ~ + E ] ' - [ ~ ( n - t ) ' + ~ + 3 A ( n - t )  

+ f ( 3 A 2  - $5' - +)I2 + R A  9 2  - 9 4  2A 

and 

G2 = [(n - t)' + $'(n - t )  + ;AS2+ 3A(n - -I)* + (3A' - - i ) ( n  - t )  

+f(1 - S2)r + B]' - [;S(n - -I)' + :S3 + 3AS(n - t )  

+fS(3A2 - $8' - $)I2. 
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5. Discussion and conclusion 

In this paper, we have obtained rational solutions of the differential-difference KdV 
equation, Toda equation and the discrete KdV equation. There are many methods to obtain 
rational solutions. The method used here is Hirota’s bilinear formalism and Bicklund 
transformations. The crucial step is the use of corresponding nonlinear superposition 
formulae. It is of interest to note that the rational solutions thus obtained for the differential- 
difference KdV equation, Toda equation and the discrete KdV equation are connected by 
B2cklund transformations which are special cases of more general Backlund transformations 
with parameters. Thus it  enables us to obtain other new solutions of these equations through 
nonlinear superposition of soliton solutions and rational solutions. The simplest example 
was given in I211 for the differential-difference KdV equation. To he more precise, take one- 
soliton solution and rational solution of (2), i.e. exp(7) + exp(-O) and t - n, respectively. 
The new solution of (2) generated through nonlinear superposition of these two solutions is 

Z ( t  - n )  sinh($p) sinh(7) + cosh(fp)cosh(q) 

where 7 = sinh(p)t + 70, with p and 70 as constants. Thus using the results in this paper 
and [21,22], we can obtain further solutions of differential-difference KdV equation (I), the 
Tcda equation (12) and the discrete KdV equation (18). 
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Appendix 

The following bilinear operator identities hold for arbitrary functions a and b : 

sinh(aD,)(D,a.b).a* = Dr[sinh(~D,)a.b].[cosh($D,)a .a] (AI)  

Dl[cosh(~Dn)a .U]. [cosh(;D,)b. b] = 2cosh($D,J(D,a b) .ab (A2) 

cosh($D,)[sinh(iD,)a.b].ab - sinh(aD,)[cosh(fD,)a.a].b2 

= -sinh(~D,)[cosh(~D,)u.b].ab (‘43) 

sinh($D,)a .U = 0. 644) 
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